
HMAC and “Secure Preferences”:
Revisiting Chromium-based Browsers Security?

Pablo Picazo-Sanchez, Gerardo Schneider, and Andrei Sabelfeld

Chalmers University of Technology
Gothenburg, Sweden,

Abstract. Google disabled years ago the possibility to freely modify
some internal configuration parameters, so options like silently (un)install
browser extensions, changing the home page or the search engine were
banned. This capability was as simple as adding/removing some lines
from a plain text file called Secure Preferences file automatically created
by Chromium the first time it is launched. Concretely, Google intro-
duced a security mechanism based on a cryptographic algorithm named
Hash-based Message Authentication Code (HMAC) to avoid users and
applications other than the browser modifying the Secure Preferences file.
This paper demonstrates that it is possible to perform browser hijacking,
browser extension fingerprinting and remote code execution attacks as
well as silent browser extensions (un)installation by coding a platform-
independent proof-of-concept changeware that exploits the HMAC, mak-
ing possible the free modification of the Secure Preferences file. Last but
no least, we analyze the security of the three most important Chromium-
based browsers: Brave, Chrome, Microsoft Edge and Opera, concluding
that all of them suffer from the same security pitfall.

Keywords: HMAC · Changeware · Chromium · Web Security

1 Introduction

Chrome is as of today the most used web browser in the world [29]. Chrome,
as well as many other browser vendors like Opera, Brave and Vivaldi are based
on Chromium, an open-sourced web browser developed by Google. Recently,
Microsoft moved to adopt Chromium as the basis for the new Microsoft Edge
browser [21]. Given its widespread use, around 75% of the desktop users on
Internet [27], the security of Chromium is paramount.

In order to allow the web browser for an easy customization, there exist
many configuration parameters that might be modified to fit the needs of the
users. Setting the homepage to a custom webpage that a user frequently visits,
changing the default search engine, “pinning” some URLs to tabs and browser
extensions management are just a few examples of the huge list of actions that
can be performed to make the user experience more pleasant. One of the most

? Version modified for responsible disclosure



2 Pablo Picazo-Sanchez et al.

promising tools for enriching the browser experience of the user is browser exten-
sions. Extensions are installed from the Chrome Web Store, which is a central
repository managed by Google.

As recently claimed [14], approximately 10% of the browser extensions stored
between 2012 and 2015 in the Web Store were classified as malware and deleted
from the repository. Despite many attempts done to improve the security and
privacy of extensions [14, 15, 24, 26], vulnerabilities still abound [2, 3, 25], being
Potentially Unwanted Programs (PUPs) one popular and challenging example
because they are not usually marked as malware by antivirus vendors [16,28].

PUPs are installation executable files that, apart from installing the ap-
plication the user wants, they also execute other software that might not be
related to the legitimate one. Adware and changeware are two types of PUPs
that adds advertisement to the webpages the user visits and changes the config-
uration properties of the browser silently, respectively. Recently, a cybersecurity
firm discussed the thin line between espionage-level malware and PUPs and de-
tected more than 111 browser extensions considered to be PUP whose goal was
to spy users [4]. In this paper, we consider PUPs and pay special attention to
how changeware works, providing a concrete example of how the installation of
uTorrent application modifies the configuration of the browser (see ??).

In the particular case of Chromium-based browsers, each user obtains a cou-
ple of configuration files for storing information such as bookmarks, history,
homepage and some other preferences. One of these files is the Secure Prefer-
ence file which is automatically loaded when the browser is launched and it is
updated each time the browser is closed. In 2012 Google improved the security
of browser to protect users from silently installing extensions since these were
causing more and more problems. Before that, it was possible to silently install
extensions into Chrome by directly modifying the Secure Preferences file or by
using the Windows registry mechanism. Extensions that were installed by third
party programs through external extension deployment options were disabled by
default and only extensions installed from Google Web Store are allowed.

Concretely, Chromium implemented from version 25 a secure mechanism to
ensure that no external applications apart from the browser can modify the
Secure Preferences file. This mechanism is a custom Hash-based Message Au-
thentication Code (HMAC) algorithm [17] which produces a SHA-256 hash given
both a seed and a message. However, as the original authors claimed, the security
of HMAC relies on the seed generation, thus being secure as long as the seed is.

Our findings reveal that the seed needed to generate the HMAC, stored in a
public file named resources.pak, is not randomly generated. Moreover, for each
Chromium-based browser, the seed is the same for all the Operating Systems
(OSs). Nevertheless, if the seed were randomly generated the problem of where
to securely store either the seed or the key used to encrypt the seed, still persists.
Because of that, some authors proposed to use WhiteBox-Cryptography [8] to
secure this seed on Chromium [6]; however, this solution is platform dependent
and only works under certain circumstances and on a concrete OS. As we show
in this paper the problem remains unsolved. Once a malicious party gets such a



HMAC in Chromium-based Browsers 3

seed, it may impersonate the browser and modify any parameter of the Secure
Preferences file.

To the best of our knowledge, the attack against the Secure Preferences
file has never been published with the exception of a partial description in (at
least) one Internet forum—whose moderator claimed that this attack no longer
works [13]. To confirm this, we downloaded and installed multiple versions of
Chromium in computers with Windows 10 and MacOS. We implemented the
attack described in that forum and confirmed that it did stop working from
Chromium versions up to 58.0.2999.0. In this paper we present a proof-of-concept
PUP that modifies the Secure Preferences file of any Chromium version from
58.0.2999.0 until the latest one at the time of writing (85.0.4172.0). Additionally,
if used together with the attack presented in that forum, any Chromium version
can be easily editable (see Table 1).

Table 1. Chromium versions exploitable via HMAC.

Chromium Version Released SPF

(prior to) 25.0.1313.0 2012 Free modification
25.0.1313.0 2012 Attack [13]
58.0.2988.0 2017-01 Attack [13]
58.0.2999.0 2017-02 This paper
85.0.4172.0 (latest) 2020 This paper

This poses serious security and privacy issues. For instance, it is possible
to perform browser hijacking attacks [22, 30], fingerprinting attacks [2, 18, 24],
remote code execution [25], as well as silent browser extensions (un)installation
(something Google has in principle banned years ago [9]). In many cases, the
way of proceeding is the same: changing the browser search provider to generate
advertising revenue by using well known search providers like Yahoo Search or
Softonic Web Search among others [1, 20]; retrieving information about that
uniquely identifies the user, and; exploiting other extensions to gain privileges
or to remotely execute source code.

Contributions This paper analyzes how four of the most important Chromium-
based browsers [11]—Chrome (70% of market share), Microsoft Edge (5% of
market share), Opera (2.4%), and Brave1—manage the security and privacy of
the users through a configuration file named Secure Preferences file. We discover
that all of them use fixed seeds to generate the HMACs to secure the Secure
Preferences file. These HMACs are used to guarantee that the content of the
users’ privacy settings have not been altered by any other party different than
the browser (Section 3). We implement a changeware that performs a Chromium
impersonation attack to (un)install extensions, perform phishing attacks, hijack

1 Brave uses Chrome user-agent (desktop and Android) and Firefox user-agent (iOS).



4 Pablo Picazo-Sanchez et al.

user’s browser, fingerprint users through the extensions the browser has as well as
remote code execution from installed-by-default extensions among other things
(??).

Section 2 presents the background about the Secure Preferences file and how
Chromium uses it. ?? exposes some countermeasures to avoid the attack as well
as brief discussion about how this vulnerability can be used by the research com-
munity for analyzing browser extensions. Finally, Section 4 presents the related
work and Section 5 concludes the paper.

2 Chromium Preferences

In order to manage and enforce configurable settings, Chromium implements
a mechanism called preferences to modify the settings of the browser per user
instead of doing this centrally. Using preferences it is possible to configure, for
instance, the homepage, which extensions are enabled/disabled and the default
search engine.

To understand how Secure Preferences file works, we provide an example
in what follows. Let Alice be a user who wants to manually modify any of
the preferences stored in the Secure Preferences file. She accesses to her profile’s
folder, opens the JSON file—all the preferences are stored in plain text so anyone
can access that file—and manually alters the preferences she would want to.
Once she has modified them, then she saves the file and launches her Chromium
instance to check whether the changes have been applied or not. The problem is
that when Chromium loads, it automatically checks the integrity of the Secure
Preferences file, warning Alice that the file has been externally modified and the
browser marks the file as corrupted. Finally, Chromium automatically restores
the Secure Preferences file to either a default or to a previous safe state.

Alice, who is an advanced user, tries to cheat Chromium by launching the web
browser, and manually modifying the Secure Preferences file when the browser
is running to check whether the changes can take effect. That will not work since
Chromium loads the Secure Preferences file when it is launched the first time
and overrides the whole Secure Preferences file when Alice closes the browser.

The reason to avoid external modifications to the Secure Preferences file is
to improve on the privacy of the Chromium’s users. In particular, what makes
the Secure Preferences file secure is that Google added a Hash-based Message
Authentication Code (HMAC) signature of every entry (settings/preference) in
the file. In addition to this, the file also has a global-HMAC called super mac to
check the integrity of all the other HMACs.

HMAC [17] is a particular case of Message Authentication Code (MAC)
which involves a hash function in combination with a shared secret key—also
known as seed in these schemes. This algorithm was created in the 90’s and has
been usually used for both data verification and also for message authentication.
As stated in the original proposal, the security of the HMAC protocols rely on
the security of the underlying hash function, as well as both the size and quality
of the seed.



HMAC in Chromium-based Browsers 5

Finally, if all the HMACs of the Secure Preferences file are correct, the
browser will set up the settings according to what is stated in that file. In the case
the validation procedure fails, the browser will use the default values for those
ones where the HMAC validation failed. This recovery process is the same for
all the Chromium-based browser but Brave. In this particular browser, instead
of restoring the file to a previous state, it keeps a copy in the file system of the
“corrupted” preferences file (using .old extension) and creates a new one. We
included in Appendixes A.2, A.3 and A.1 the path where the Secure Preferences
file are usually placed according to the platform and the browser.

3 Background: HMAC and Chromium

From version 25.0.1212.0 released in 2012, Google decided to not allow other
parties different than the browser to modify the user’s settings by including an
HMAC per setting stored in the Secure Preferences file. When the user closes the
browser, it computes the HMAC whereas when the user opens it, the browser re-
computes all the HMACs and checks whether they were created by the browser.
In particular, to modify the Secure Preferences file, the browser needs to: a) ac-
quire the seed, and; b) obtain the message. Once the browser has these data,
then it computes both the HMACs of the settings, and a final HMAC called
super mac.

3.1 Acquiring the seed

The seed is stored in the resource.pak file. See Appendix B.2 for more infor-
mation about the paths of the browsers on different OSs. We explain in what
follows how we got the seeds of the latest versions as of June 2020 of the three
browsers being considered.

OS #PC Same Seed

Linux 48 X
Windows 44 X
MacOS 8 X

Table 2. Seed calculation on different OS

Chrome The seed that Chrome uses
to compute the HMAC is a 64-long
characters hexadecimal string that can
be found in the resource.pak file.
Additionally, we included the source
code we run to retrieve the seed
which can be seen in Figure 3 (Ap-
pendix C). Concretely, the first re-
source that has a length of 256 binary
bits in the resource.pak file is the
seed Chromium uses. Roughly speak-
ing, the way we obtained this resource, is by loading the file and seeking for the
first line (resource) with 64 characters.

We executed the script on 100 different computers with different OSs (48
Linux, 44 Windows and 8 MacOS) and the results can be seen in Table 2.
Concluding that the seed is not randomly computed as claimed. Concretely, the



6 Pablo Picazo-Sanchez et al.

seed is: b’\xe7H\xf36\xd8^\xa5\xf9\xdc\xdf%\xd8\xf3G\xa6[L\xdffv\x00\
xf0-\xf6rJ*\xf1\x8a!-&\xb7\x88\xa2P\x86\x91\x0c\xf3\xa9\x03\x13ihq\

xf3\xdc\x05\x8270\xc9\x1d\xf8\xba\O\xd9\xc8\x84\xb5\x05\xa8’. We run
this experiment on Chrome version 85.0.4172.0.

Brave, Microsoft Edge and Opera We executed the same script to extract
the seed on Brave, Edge and Opera but we could not change the user’s settings.
We had then to perform a brute force attack to extract the seed because the file
was different than in Chrome. We got an alarming result concerning the seed
used by these three vendors. We realized that the seed is the blank string, i.e.,
seed = b’’ in both Windows and MacOS. The version of Microsoft Edge we
used was 85.0.564.51, for Brave we used version 1.14.81 (based on Chromium:
85.0.4183.102) whereas for Opera we used version 71.0.3770.148.

3.2 Obtaining the Message

In order to correctly generate the HMAC, a message should be passed as input.
This message is composed of a MachineIdStatus and a string message. Such a
variable is platform dependent, i.e., the MachineIdStatus is a different value in
Windows, Linux and MacOS. That said, all of the three browsers have similar
procedures to create the message used to generate the HMAC. In what follows
we detail how the three different platforms obtain that MachineIdStatus value.

S-1-1-11-111111111-11111111-111111111-1111

Literal
Prefix

Identifier
Authority

Sub-Authority ID

Three Sub-Authorities for Uniqueness

Relative
ID

Fig. 1. Security IDentifier (SID)

Windows Users are pro-
vided with a unique identifier
named SID. This identifier is
usually used to control the ac-
cess to resources like files, reg-
istry keys and network shares,
among others. An example of
the SID can be seen in Fig-
ure 1 and it might be eas-
ily retrieved by executing ei-
ther the wmic or the whoami

commands on Windows. Af-
ter retrieving the SID, the last

characters (Relative ID in Figure 1) are deleted for the final usage.

MacOS Instead of using the SID, MacOS uses the hardware Universally Unique
IDentifier (UUID) which is a 128-bits number got by using the command system_

profiler SPHardwareDataType. It outputs an hexadecimal number split in five
groups by a “-”, e.g., 1098AB78-6BF1-517E-905A-F018AABC4B26. In particu-
lar, in the device_id_mac.cc we can find how Chromium retrieves that UUID
which is used afterwards as part of the message.



HMAC in Chromium-based Browsers 7

Linux Both Windows and MacOS have their own files under chromium/src/

services/preferences/tracked/ directory but there is no references about
Linux. We corroborate that by checking the device_is_unittest.cc file where
we found an if-then-else statement to differentiate how the SID should be com-
puted depending whether the OS is either Windows or MacOS but there are no
rules for Linux OS. Consequently, when the browser is running on Linux, the else
statement is executed where there is a MachineIdStatus::NOT_IMPLEMENTED;.
As a consequence, the MachineIdStatus variable has an empty string.

By analyzing how the message looks like in Chromium, we realized that it
uses the key of the Secure Preferences file value it wants to modify together with
either the SID or the UUID of the current user/computer in order to create such a
message. More concretely, Chromium implements a function named GetMessage

in the pref_hash_calculator.cc file, whose purpose is to concatenate three
parameters given as inputs: Device ID, path and value.

Device ID corresponds to the MachineIdStatus variable, i.e., UUID on Ma-
cOS or the SID of the user without the relative ID information on Windows or
the empty string on Linux. In other words, Device ID is the identifier of the
machine where Chromium is installed. Since every machine has its own unique
SID no two HMACs will be the same when computed on different machines.
However, on MacOS, since that the UUID is linked to the machine instead of
being associated to the user, different profiles in the same machine will have the
same UUID value.

Path is the path where the Secure Preferences file is in the computer (path
of the JSON file). This path has a concrete format that uses dots (“.”) as de-
limiters. For example, the preference that handles if the home button should be
visible or not is show home button, and the path of this preference is browser.
show home button and it contains a Boolean value.

The final HMAC is a string with, some peculiarities. For example, all empty
arrays and objects are removed, or; the character “!” is replaced by its Unicode
representation (“\u003C”). In the example, the value of the home button would
be "show home button":true.

3.3 HMAC Reproduction

HMAC

Seed

Message

resources.apk

SecurePreferences.json

SID

Fig. 2. HMAC protocol in Chromium
based browsers

The function GetDigestString lo-
cated in pref_hash_calculator.cc

file is the one that generates an
HMAC given a message and a key
as inputs. The key has already been
described in Section 3.1 whereas the
message was described in Section 3.2.
Therefore, we can impersonate the
browser and generate HMACs to
change any of the values of the Se-
cure Preferences file as if we were the



8 Pablo Picazo-Sanchez et al.

browser. An illustrative summary of
the HMAC protocol in Chromium-
based browsers can be seen in Fig-
ure 2. Once the HMACs are computed

(one per modified value in the Secure Preferences file) then they are combined to
create a new message that is used as input of the hash algorithm to calculate the
final HMAC called super mac. The Secure Preferences file is then updated with
the result of these calculations together with the modified preference values.

Chromium has a validation mechanism to check the integrity of the HMACs
which is also calculated in the Validate function of the pref_hash_calculator.
cc file. Such a function takes three parameters as input: a path of the JSON file,
a value of the JSON file and a digest string which is the current HMAC of that
value. Inside that function, another function called VerifyDigestString (which
is also located in the same file, i.e., pref_hash_calculator.cc) takes as inputs
a key—which is a string, a message—generated from the function GetMessage
on pref_hash_calculator.cc, and a digest string—which is the HMAC. After
being verified by the function Verify located on hmac.cc, a SHA256 string is
returned.

4 Related Work

Many researchers have analyzed browser extensions from the security and privacy
point of view (e.g., [5, 7, 10, 12, 15, 19, 23, 25, 26, 31]) but very little research has
been conducted about how browser preferences and the Secure Preferences file
can be used by malicious software to attack user’s privacy or security.

The first attack against the Secure Preferences file, on Chrome for Windows,
was described in one Internet forum in 2015, where it was shown how this file
could be silently modified [13]. We confirmed this and developed a new attack
based on that one that combined can be used to modify the Secure Prefer-
ences file of any version of any Chromiun-based browser. Indeed, we turned a
less known narrowly-targeted attack (that only worked for Chrome and only on
Windows) into a powerful platform-independent attack that exploits the most
important Chromium-based browsers. Furthermore, we presented a systematic
study of this class of attack and investigated its hefty consequences for browser
hijacking and browser extensions.

Far from being part of Chrome security model, the same year, Banescu et
al. [6] assumed the existence of a type malware called changeware with no root
privileges. This malware is typically installed by Internet toolbars, banners or
the execution of executable files like installers whose goal is to change user’s
configuration files. However, no more information was provided about how the
attack could be performed.

In most, if not all, the referenced papers try to find security solutions for
browser extensions without being concerned about the entry point of these pref-
erences in the browser. Active extensions, web accessible resources, permissions
they have, silent (un)installations or the path of installation where all the files



HMAC in Chromium-based Browsers 9

and extra files are located in the OS are a few examples of topics covered in
the literature. We went one step forward and described an attack to the Secure
Preferences file where all the preferences of the user are stored. We can actually
modify any of these settings and thus by pass most of the proposed solutions in
the literature, originating new security and privacy issues.

5 Conclusions

In this paper, we revisited the security and privacy of Chromium’s mechanism
to access the Secure Preferences file. Google introduced a security mechanism
based on a cryptographic algorithm named HMAC to avoid users and appli-
cations other than the browser modifying the Secure Preferences file. We found
that the seed used for the HMAC is fixed making Chromium vulnerable to PUP.
We analyzed the three most important Chromium-based browsers, i.e., Brave,
Chrome, Edge and Opera. Last but not least, this paper demonstrates that it is
possible to perform browser hijacking, browser extension fingerprinting and re-
mote code execution attacks as well as silent browser extensions (un)installation
by coding a platform-independent proof-of-concept changeware that exploits the
HMAC, freely modifying the Secure Preferences file. Our changeware, in com-
bination with the one proposed years ago [13], can be used to modify such
preferences file of any Chromium version from 25 to the latest one (85.0).

Acknowledgments This work was partially supported by the Swedish Founda-
tion for Strategic Research (SSF) and the Swedish Research Council (Veten-
skapsr̊adet) under grant Nr. 2015-04154 (PolUser: Rich User-Controlled Privacy
Policies).

References

1. 2-spyware: Remove Softonic. https://www.2-spyware.com/remove-softonic.

html (2019)

2. Aggarwal, A., Viswanath, B., Zhang, L., Kumar, S., Shah, A., Kumaraguru, P.:
I spy with my little eye: Analysis and detection of spying browser extensions. In:
EuroS&P. pp. 47–61 (April 2018)

3. Arshad, S., Kharraz, A., Robertson, W.: Identifying extension-based ad injection
via fine-grained web content provenance. In: RAID. vol. 9854, pp. 415–436 (2016)

4. Awakesecurity: Discovery of a massive, criminal surveillance campaign.
https://awakesecurity.com/blog/the-internets-new-arms-dealers-malicious-
domain-registrars/ (2020)

5. Bandhakavi, S., Tiku, N., Pittman, W., King, S.T., Madhusudan, P., Winslett, M.:
Vetting browser extensions for security vulnerabilities with VEX. Commun. ACM
54(9), 91–99 (Sep 2011)

6. Banescu, S., Pretschner, A., Battré, D., Cazzulani, S., Shield, R., Thompson,
G.: Software-Based Protection against Changeware. In: CODASPY. pp. 231–242
(2015)

https://www.2-spyware.com/remove-softonic.html
https://www.2-spyware.com/remove-softonic.html
https://awakesecurity.com/blog/the-internets-new-arms-dealers-malicious-domain-registrars/
https://awakesecurity.com/blog/the-internets-new-arms-dealers-malicious-domain-registrars/


10 Pablo Picazo-Sanchez et al.

7. Carlini, N., Felt, A.P., Wagner, D.: An evaluation of the google chrome extension
security architecture. In: USENIX. pp. 97–111 (2012)

8. Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptography and
an AES implementation. In: Selected Areas in Cryptography. pp. 250–270 (2003)

9. Chromium: No more silent extension installs. http://blog.chromium.org (2019)
10. Dhawan, M., Ganapathy, V.: Analyzing information flow in javascript-based

browser extensions. In: ACSAC. pp. 382–391 (2009)
11. gs.statcounter: Browser market share. https://gs.statcounter.com/

browser-market-share (2020)
12. Guha, A., Fredrikson, M., Livshits, B., Swamy, N.: Verified security for browser

extensions. In: S&P. pp. 115–130 (2011)
13. HMAC: Chromium Secure Preferences. https://kaimi.io/2015/04/

google-chrome-and-secure-preferences/ (2019)
14. Jagpal, N., Dingle, E., Gravel, J.P., Mavrommatis, P., Provos, N., Rajab, M.A.,

Thomas, K.: Trends and lessons from three years fighting malicious extensions. In:
USENIX. pp. 579–593 (2015)

15. Kapravelos, A., Grier, C., Chachra, N., Kruegel, C., Vigna, G., Paxson, V.: Hulk:
Eliciting malicious behavior in browser extensions. In: USENIX. pp. 641–654 (2014)

16. Kotzias, P., Matic, S., Rivera, R., Caballero, J.: Certified pup: Abuse in authenti-
code code signing. In: CCS. pp. 465–478 (2015)

17. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-hashing for message au-
thentication. Internet Engineering Task Force (IETF) (1997)

18. Laperdrix, P., Bielova, N., Baudry, B., Avoine, G.: Browser fingerprinting: A sur-
vey. CoRR abs/1905.01051 (2019), http://arxiv.org/abs/1905.01051

19. Lerner, B.S., Elberty, L., Poole, N., Krishnamurthi, S.: Verifying web browser ex-
tensions’ compliance with private-browsing mode. In: ESORICS. pp. 57–74 (2013)

20. Malwarebytes: Billion-dollar search engine industry attracts vultures, shady ad-
vertisers, and cybercriminals. https://blog.malwarebytes.com (2020)

21. Microsoft: Microsoft edge: Making the web better through more open source col-
laboration. https://bit.ly/2QeZFwm (2019)

22. Rogowski, R., Morton, M., Li, F., Monrose, F., Snow, K.Z., Polychronakis, M.:
Revisiting browser security in the modern era: New data-only attacks and defenses.
In: EuroS&P. pp. 366–381 (April 2017)

23. Sánchez-Rola, I., Santos, I., Balzarotti, D.: Extension breakdown: Security analysis
of browsers extension resources control policies. In: USENIX. pp. 679–694 (2017)

24. Sjösten, A., Van Acker, S., Picazo-Sanchez, P., Sabelfeld, A.: LATEX GLOVES:
Protecting browser extensions from probing and revelation attacks. In: NDSS. p. 57
(2018)

25. Somé, D.F.: Empoweb: Empowering web applications with browser extensions. In:
S&P. pp. 227–245 (May 2019)

26. Starov, O., Nikiforakis, N.: Xhound: Quantifying the fingerprintability of browser
extensions. In: S&P. pp. 941–956 (2017)

27. Statcounter: Desktop Browser Market Share Worldwide.
https://gs.statcounter.com (2019)

28. Urban, T., Tatang, D., Holz, T., Pohlmann, N.: Towards understanding privacy
implications of adware and potentially unwanted programs. In: ESORICS. pp.
449–469 (2018)

29. w3schools: Browser Statistics. https://www.w3schools.com/browsers/ (2019)
30. Xing, X., Meng, W., Lee, B., Weinsberg, U., Sheth, A., Perdisci, R., Lee, W.:

Understanding malvertising through ad-injecting browser extensions. In: WWW.
pp. 1286–1295 (2015)

http://blog.chromium.org/2012/12/no-more-silent-extension-installs.html
https://gs.statcounter.com/browser-market-share
https://gs.statcounter.com/browser-market-share
https://kaimi.io/2015/04/google-chrome-and-secure-preferences/
https://kaimi.io/2015/04/google-chrome-and-secure-preferences/
http://arxiv.org/abs/1905.01051
https://blog.malwarebytes.com/pups/2020/01/billion-dollar-search-engine-industry-shady-advertisers/
https://bit.ly/2QeZFwm
https://gs.statcounter.com/browser-market-share/desktop/worldwide
https://www.w3schools.com/browsers/


HMAC in Chromium-based Browsers 11

31. Zhao, R., Yue, C., Yi, Q.: Automatic detection of information leakage vulnerabili-
ties in browser extensions. In: WWW. pp. 1384–1394 (2015)

A Secure Preferences File

A.1 Brave

The Default directory where the Secure Preferences file is usually placed is
C:\Users\<user_name>\AppData\Local\BraveSoftware\Brave-Browser

\User Data\Default in Windows, and ~/Library/Application Support/

BraveSoftware/Brave-Browser/Default in MacOS.

A.2 Chrome

Preferences are stored in a plain text JSON file that can be found in a direc-
tory of every user’s profile. If there is only one profile in the system, the Secure
Preferences file is in the Default directory which is located in Windows under C:
\Users\<user_name>\AppData\Local\Google\Chrome\User Data\Default. In
MacOS can be found at ~/Library/Application Support/Google/Chrome/

Default/ and in Linux at ~/.config/google-chrome/Default/.

A.3 Microsoft Edge

The Default directory can be found under C:\Users\<user_name>\AppData\

Local\Microsoft\Edge Dev\User Data\Default path in Windows and

~/Library/Application Support/Microsoft Edge/Default in MacOS.

A.4 Opera

The Default directory where the Secure Preferences file is usually placed is
C:\Users\<user_name>\AppData\Local\BraveSoftware\Brave-Browser

\User Data\Default in Windows, and ~/Library/Application Support/

com.operasoftware.Opera in MacOS.

B Resources.pak File

B.1 Brave

In Brave, the resources.pak file can be found in C:\Program Files

\BraveSoftware\Brave-Browser\Application\<version> in Windows, and
in /Applications/Brave Browser.app/Contents/Frameworks/Brave Browser

Framework.framework/Versions/Current/Resources in MacOS.



12 Pablo Picazo-Sanchez et al.

B.2 Chrome

In Chrome, resource.pak file can be usually found in C:\Program Files\

Google\Chrome\Application (Windows), /Applications/Google Chrome.app/

Contents/Frameworks/Google Chrome Framework.framework/Versions/

Current/Resources (MacOS), and /opt/google/chrome (Linux).

B.3 Microsoft Edge

In Edge, resource.pak is usually at C:\Program Files\Microsoft\Edge

\Application\<version> in Windows, and /Applications/Edge Dev.app/

Contents/Frameworks/Microsoft Edge Framework.framework/Versions

/Current/Resources in MacOS

B.4 Opera

In Opera, the resources.pak file is actually called opera.pak and it can be
found in C:\Program Files\BraveSoftware\Brave-Browser\Application\<version>

in Windows, and in /Applications/Opera.app/Contents/Frameworks/Opera Framework.

framework/Versions/71.0.3770.148/Resources in MacOS.

C Source Code



HMAC in Chromium-based Browsers 13

1 def calculate_seed(data):

2 def entry_at_index(idx):

3 header_size = 12

4 resourceSize = 2 + 4

5 offset = header_size + idx * resourceSize

6 return struct.unpack(’<HI’, data[offset:offset +

resourceSize ])[1]

7
8 encoding , resource_count , alias_count = struct.unpack

(’<BxxxHH ’, data [4:12])

9 pre_offset = entry_at_index (0)

10
11 for i in range(1, resource_count + 1):

12 offset = entry_at_index(i)

13 if (offset - pre_offset == 64):

14 seed=data[pre_offset:offset]

15 break

16 pre_offset = offset

17
18 return seed

Fig. 3. Script to extract the seed used to generate the HMAC on Chrome.

1 {
2 "name": "name",

3 "description ": "description",

4 "path": "<path_to_host_app >",

5 "type": "stdio",

6 "allowed_origins ": ["chrome -extension ://<ext_id >/"]

7 }

Fig. 4. Host manifest file.


	HMAC and ``Secure Preferences": Revisiting Chromium-based Browsers Security

